- Explain the following for gas atoms: Q2.
  - a) Most probable speed
  - b) Average speed
  - R.M.S. speed
- Ans.a) Most Probable speed:

We may define most probable speed of the molecules of a gas as that speed which is possessed by maximum fraction of total number of molecules of the gas.

It can be shown that

$$C_{mp} = \sqrt{\frac{2 \, k_B T}{m}}$$

1



Mean speed or Average speed: b)

Mean speed or Average speed is the average speed with which a molecule of the gas moves.

$$C_{av} = \frac{C_1 + C_2 + \dots C_n}{n}$$

From Maxwellian speed distribution law, we can show that

$$C_{av} = \sqrt{\frac{2.56 \, k_B T}{m}}$$

Where m is mass of each molecule,  $k_B$  is Boltzmann constant and T is temperature of the gas.

c) Root Mean Square Speed:

Root mean square speed of gas molecules is defined as the square root of the mean of the squares of the random velocity of the individual molecules of a gas.

$$C_{rms} = \sqrt{\frac{C_1^2 + C_2^2 + \dots C_n^2}{n}}$$

From Maxwellian speed distribution law, we can show that

$$C_{rms} = \sqrt{\frac{3 k_B T}{m}}$$

Where the symbols have their usual meaning.

From equations 1, 2 and 3, we find that  $C_{mp}: C_{av}: C_{rms} = \sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$ 

 $\therefore$   $\mathcal{C}_{rms}$  is maximum and  $\mathcal{C}_{mp}$  is minimum, out of the three



+1/Ch9/Q2/ Most Probable Average **RMS Speed**